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Abstract. Several studies have shown that sub-mesoscales
(SM ∼1km horizontal scale) play an important role in mixed
layer dynamics. In particular, high resolution simulations
have shown that in the case of strong down-front wind, the
re-stratification induced by the SM is of the same order of the
de-stratification induced by small scale turbulence, as well as
of that induced by the Ekman velocity. These studies have
further concluded that it has become necessary to include
SM in ocean global circulation models (OGCMs), especially
those used in climate studies.

The goal of our work is to derive and assess an analytic
parameterization of the vertical tracer flux under baroclinic
instabilities and wind of arbitrary directions and strength. To
achieve this goal, we have divided the problem into two parts:
first, in this work we derive and assess a parameterization of
the SM vertical flux of an arbitrary tracer for ocean codes that
resolve mesoscales, M, but not sub-mesoscales, SM. In Part
2, presented elsewhere, we have used the results of this work
to derive a parameterization of SM fluxes for ocean codes
that do not resolve either M or SM.

To carry out the first part of our work, we solve the SM dy-
namic equations including the non-linear terms for which we
employ a closure developed and assessed in previous work.
We present a detailed analysis for down-front and up-front
winds with the following results:

(a) down-front wind(blowing in the direction of the sur-
face geostrophic velocity) is the most favorable condition for
generating vigorous SM eddies; the de-stratifying effect of
the mean flow and re-stratifying effect of SM almost cancel
each other out,
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(b) in the up-front windcase (blowing in the direction op-
posite to the surface geostrophic velocity), strong winds pre-
vents the SM generation while weak winds hinder the pro-
cess but the eddies amplify the re-stratifying effect of the
mean velocity,

(c) wind orthogonal to the geostrophic velocity. In this
case, which was not considered in numerical simulations, we
show that when the wind direction coincides with that of the
horizontal buoyancy gradient, SM eddies are generated and
their re-stratifying effect partly cancels the de-stratifying ef-
fect of the mean velocity. The case when wind direction is
opposite to that of the horizontal buoyancy gradient, is anal-
ogous to the case of up-front winds.

In conclusion, the new multifaceted implications on the
mixed layer stratification caused by the interplay of both
strength and directions of the wind in relation to the buoy-
ancy gradient disclosed by high resolution simulations have
been reproduced by the present model.

The present results can be used in OGCMs that resolve M
but not SM.

1 Introduction

Recently, there has been a considerable interest in sub-
mesoscales (SM) which are oceanic structures with sizes
O(1 km) and a life time of the order of days. If one considers
that the highest resolution O(1/100) in stand-alone OGCMs
(ocean global circulation models) can represent structures of
about 10 km which is 10 times larger than SM sizes and that
OGCMs employed in thousand years runs for climate studies
have in general a 10 resolution (corresponding to structures
100 times larger than SM sizes), it seems clear that a good
deal of important physical processes have thus far gone un-
represented in many OGCMs.

The parameterization of SM cannot be constructed by
analogy with mesoscales, M. Indeed, while mesoscales are
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characterized by a small Rossby numberRo=ζ/f �1 (where
ζ and f are the relative and planetary vorticities respec-
tively), mixed layer SM are characterized byRo∼1 (Thomas
et al., 2008). Thus, the dynamics of M and SM are quite dif-
ferent and so are the final results for the fluxes of interest. For
this reason, the parameterizations for M that were suggested
for the deep ocean cannot be extrapolated to describe SM in
the mixed layer and a new parameterization is required.

Most of the present knowledge about mixed layer SM
comes from high resolution numerical simulations (Levy et
al., 2001; Thomas and Lee, 2005; Mahadevan, 2006; Ma-
hadevan and Tandon, 2006; Klein et al., 2008; Thomas et al.,
2008; Capet et al., 2008, C8; Levy et al., 2010; Mahadevan
et al., 2010, MTF). These studies have revealed many inter-
esting features of SM, e.g., their contribution to the vertical
mixing of buoyancy and tracers in the upper ocean. Among
the most salient effects of SM on global ocean properties is
the well documented tendency to re-stratify the mixed layer
(Spall, 1995; Nurser and Zhang, 2000; C8; MTF). The effect
of SM on deep convection has been recently demonstrated
by Levy et al. (2009, Fig. 9) who point out a better agree-
ment with the new mixed layer data by Boyer Montegut et
al. (2004) south of the WBC (Western Boundary Current).
Even in non-convective regimes, one can expect a signifi-
cant cancellation between SM and small scale fluxes lead-
ing to the mixed layer re-stratification (e.g., C8, Fig. 12;
Klein et al., 2008); Hosegood et al. (2008) estimated that
SM contribute up to 40% of the re-stratification process.
In addition, as noted by Lapeyre et al. (2006) and Klein et
al. (2008), the surface layers re-stratification is compensated
by de-stratification of the ocean interior pointing to an in-
teresting dynamical connection between surface and interior
processes. Another important effect of SM concerns the lo-
cation of the WBC that is shifted south by 40 and whose
off shore extension penetrates further to the east, in better
agreement with observations (Levy et al., 2009). An earlier
study by Treguier et al. (2005), who found a significant in-
crease (from∼30 Sv to∼70 Sv) in the barotropic transport
in the Gulf Stream when moving from 10 to 1/60 resolution,
was recently confirmed and the inclusion of SM further in-
creased the transport by∼50 Sv. Finally, the structure of the
MOC (meridional overturning circulation) was also signifi-
cantly affected by SM not so much in its intensity as to its
location (Levy et al., 2009, Fig. 12).

This brief summary of some of the results of very high
resolution (1/540, ∼2 km) regional studies highlights the im-
portance of SM and thus the question arises as to how much
of SM physics is actually accounted for by global OGCMs.
Even today’s highest resolution global ocean models∼1/100

(Maltrud and McClean, 2005; Sasaki et al., 2008) are not
able to capture the SM field and much less are in the position
to do so the OGCMs coupled to an atmospheric model used
in climate studies where the resolution is O(10) but gener-
ally lower. The significant global processes revealed in going
from 10 resolution (∼100 km) and 1/540 resolution (∼2 km)

are presently absent in such global models especially in cli-
mate studies. Therefore, a reliable parameterization of SM in
terms of the resolved fields has become necessary to ensure
the physical completeness of mixed layer mixing processes.

As MTF stressed, “parameterization of the circulation in-
duced by SM eddies in the presence of wind forcing is
required in climate models in order to simulate the re-
stratification correctly”. To accomplish such a goal, a pa-
rameterization: (1) must be valid for an arbitrary tracer since
a model for buoyancy only is insufficient because it cannot
describe an important ingredient such as CO2, (2) must in-
clude a wind of arbitrary direction and intensity since MTF
have shown that its effect on SM fluxes is large and because
forcing in future climates is likely to be quite different from
today’s, (3) must reproduce simulation data and finally, (4) to
be usable in climate codes, it must be expressed only in terms
of resolved fields, that is, the parameterization must be aver-
aged over mesoscale fields. No parameterization presently
available satisfies these criteria.

We begin by considering the model independent dynamic
equation for an arbitrary mean tracer1:

Dtτ + ∇H · F H + ∂zFV = ∂z(Kv∂zτ) + G (1a)

where the SM horizontal and vertical tracer fluxes are defined
as follows:

F H ≡ u′τ ′, FV ≡ w′τ ′ (1b)

In Eqs. (1a,b), an overbar indicates averages over subme-
soscales. To derive a parameterization for OGCMs that do
not resolve either SM or M, one must further average the
present results over the mesoscale fields, a problem we have
studied elsewhere (Canuto and Dubovikov, 2010).

The method we employ to derive the SM parameteriza-
tion is analytical and thus it can be followed and checked in
detail. The final result for the vertical SM flux for an arbi-
trary tracer under arbitrary buoyancy and wind conditions, is
also expressed analytically. The model includes non-linear
interactions. To obtain the desired results, one carries out
three steps: first, one solves in Fourier space the SM dy-
namic equations describing theu′, w′, τ ′ fields; second, one
constructs the second-order correlation functionw′τ ′ in k-
space and third, one integrates the results over all wave vec-
tors to obtain the fluxes in physical space in terms of the
resolved fields, to be used in Eq. (1a). The procedure was
first worked out for the linear case by Killworth (1997) and
for the non-linear case by Canuto and Dubovikov (2005,
2006, CD5, 6). Though the dynamic equations describing
the SM velocity and temperature fields are formally the same
as those describing mixed layer mesoscales that were dis-
cussed in Canuto et al. (2010), in the present case they must

1Dt=∂t+u·∇H +w∂z where (u, w) represent the mean flow,
small scale vertical mixing is represented by the first term in the
right hand side of Eq. (1a) whereKv is the vertical diffusivity,G
represents external sources and primes denote submesoscale fields.
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be solved in the regime appropriate to SM, namely for a
Rossby numberRo=ζ/f =O(1) rather thanRo�1, as in the
case of mesoscales. In addition, SM are trapped in the ML
while mesoscales extend throughout the entire water column
and form coherent structures (Provenzale, 1999).

The key difficulty in solving the SM dynamic equations is
the presence of non-linear terms whose closure is expressed
in Eq. (3a) below. Since the latter is a key ingredient of the
present model and since the original derivation (Canuto and
Dubovikov, 1997) is somewhat involved, in Appendices A
and B we have attempted to find a way to present a more
physical approach to Eq. (3a) with the goal of highlighting
the physical rather than the technical features of Eq. (3a).

In addition to the derivation of the closure relations
(Eq. 3a), there is the issue of the assessment of Eq. (3a)
when applied to flows different than the present one so as
to justify their use in the present context. Such an assess-
ment was made using data from freely decaying flows, 2-D
flows, rotating flows, unstably stratified flows, shear driven
flows, DNS data, etc. and the results were in good agree-
ment with the data (see Canuto et al., 1999 and references
therein). Even so, we consider such an assessmentnecessary
but not sufficientfor the credibility of the parameterization of
SM fluxes derived below. The additional requirement con-
sists in assessing the model predictions against results from
SM resolving simulations. A first simulation corresponds to
a system forced only by baroclinic instabilities and no wind
(Fox-Kemper et al., 2008, FFH) while a second one corre-
sponds to a flow under realistic wind and buoyancy forcing
(C8, 0.75 km resolution; MTF, 1 km resolution). They will
be discussed in Sects. 5–7.

The following two conditions must be further satisfied by
an SM parameterization: (a) it must reproduce existing data
and (b) it must predict new features to be assessed when such
data become available. In this context, it must be mentioned
that our work was posted as an OS Discussions (Canuto and
Dubovikov, 2009, CD9) before Dr. A. Mahadevan kindly
sent us the MTF manuscript. Our model would have been
falsified had its predictions turned out to be inconsistent with
MTF data. However, the model predictions in CD9 not only
did not contradict the simulation data, but called attention to
the same qualitative SM effects as MTF did in their paper.

To make the SM parameterization usable in OGCMs, we
looked for analytical solutions of the SM dynamic equations
and to achieve that goal, we introduced the assumption that
the fluxes are mostly contributed by their spectra in the vicin-
ity of their maxima. Though this introduces errors of several
tens of a percent, the advantages of obtaining analytic expres-
sions for the vertical tracer flux in terms of resolved fields in
the presence of both frontogenesis and Ekman pumping, was
worth exploring. Another approximation which has helped
us obtain analytical results follows from the assumption that
the SM kinetic energyKSM exceeds̃K=ũ2/2 wherẽu is the
baroclinic component of the mean velocity (we call atten-
tion to the fact that̃K is considerably smaller than the mean

kinetic energy), that is, the condition of applicability of the
present treatment is predicated on the assumption:

K̃ � KSM (1c)

which we shall check several times in the following. Fur-
thermore, following Killworth (2005), we adopt the approx-
imation that due to the mixed layers strong mixing, one can
neglectτ z in the SM equations. Anticipating our main result,
the vertical flux that enters Eq. (1a) will be shown to have the
following form:

∂zFV = u+

S · ∇H τ (1d)

whereu+

S plays the role of a bolus velocity. Sinceτ z is small,
one may make the analogy with the mesoscale bolus velocity
more complete by adding to Eq. (1d) the termw+

S τ z, where
w+

S is found from the continuity condition∂zw
+

S +∇H ·u+

S=0
(Killworth, 2005).

The organization of the paper is as follows. In sec.2 we
discuss the dynamic equations for the SM fields in the ML
and apply the turbulence closure model to the non-linear
terms; in Sect. 3 we present the form of∂zFV andFV which
we derive in Appendix C; in Sect. 4 we derive the explicit
form of the SM kinetic energyKSM in terms of the resolved
fields that, together with the results of the previous section,
completes the problem of expressing∂zFV in terms of re-
solved fields in the presence of both frontogenesis and Ek-
man pumping. In Sect. 5 we study the case of a strong wind
when the Ekman velocity exceeds the geostrophic one. We
shall show that when a strong wind blows in the direction
of the geostrophic velocity or of∇H b, it tends to de-stratify
the mixed layer but at the same time it generates SM that
tend to re-stratify the mixed layer. On the other hand, when
the wind blows in directions opposite to geostrophic velocity
or to ∇H b, it re-stratifies the mixed layer, an effect that is
strengthened by the re-stratifying effect of SM. In Sect. 6 we
compare the model results with the data from the SM resolv-
ing simulations of Capet et al. (2008). In Sect. 7 we compare
the model results for the no-wind case. In Sect. 8, we present
some conclusions.

2 Sub-mesoscales dynamic equations near the surface

Consider an arbitrary tracer fieldτ and separate it into mean
and fluctuating partsτ=τ+τ ′. The dynamical equation for
the SM tracer fieldτ ′ is obtained by subtracting the equation
for the mean tracerτ from that of the total fieldτ . Since
this procedure is well known and entails only algebraic steps
with no physical assumptions, we cite only the final result
(the notation is explained in footnote 1):

Dtτ
′
= −U ′

· ∇τ − Qτ
H − Qτ

V + ∂z

(
Kv∂zτ

′
)

(2a)

Qτ
H ≡ u′

· ∇H τ ′
− u′ · ∇H τ ′, Qτ

V ≡ w′τ ′
z − w′τ ′

z

where the functionsQ’s represent the non-linear terms. As
expected, the average of Eqs. (2a) yields identically zero. It
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must be noted that in Eqs. (2a) no closure has been used
for the non-linear terms. Without the non-linear terms,
Eqs. (2a) formally coincide with those describing mixed
layer mesoscales tracer fields studied by Killworth (2005).
The difference in representing M and SM lies in the scales
over which the averages (represented by an overbar in
Eqs. 2a), is taken: in the case of mesoscales, averages are
over scales exceeding mesoscales while in the case of subme-
soscales, averages are meant to be over scales smaller than
mesoscales but larger than submesoscales. Furthermore, in
describing mesoscales, one hasRo�1 andRi�1, whereas in
the case of sub-mesoscales, bothRo, Ri∼O(1). Following
Killworth (2005), we neglect the terms containingτ z andτ ′

z

in which case the first of Eqs. (2a) simplifies to:

∂tτ
′
+ ū · ∇H τ ′

= − u′
· ∇H τ − Qτ

H (2b)

Without the non-linear term, Eq. (2b) coincides with Eq. (2)
of Killworth (2005) for the mesoscale buoyancy field. Within
the same approximation, the equation for the horizontal SM
velocity is given by:

∂tu
′
+ū·∇H u′

+u′
·∇H u+f ez×u′

= −ρ−1
∇H p′

−Qu
H (2c)

Qu
H ≡ u′

· ∇H u′
− u′ · ∇H u′ (2d)

whereez is the unit vector along z axis. Next, we Fourier
transform Eqs. (2b,c) in horizontal planes and time. Follow-
ing Killworth (1997, 2005), we keep the same notationu′, τ ′

for the submesoscale fields in thek−ω space and assume that
when Eqs. (2b,c) are Fourier transformed, the mean fieldsu

and∇H τ are constant in time and horizontal coordinates. We
thus obtain:

i(k · ū − ω)τ ′
= − u′

· ∇H τ − Qτ
H

i(k · ū − ω)u′
= − u′

· ∇H u − f ezxu′
− Qu

H − ikρ−1p′

∂zw
′
= − ∇H · u′

= − ik · u′ (2e)

where we have added the continuity equation that provides
the z-derivative ofw′. We recall thatτ ′, u′ and the non-
linear terms are functions of the horizontal wave vector and
frequency (k, ω) and z, whileū is a function of z only and
∇H τ is z independent.

Equations (2e) form a closed system whose solution pro-
vides the necessary ingredients to construct the vertical flux
(Eq. 1b) provided one has a closure for the non-linear terms,
a problem discussed in Appendices A and B with the result
that, in the vicinity ofk = k0 where the SM energy spectrum
E(k) has its maximum, the non-linear termsQH have the
following forms:

Qτ
H(k, ω) = χτ ′(k, ω), Qu

H(k, ω) = χu′(k, ω), (3a)

χ = k0USM, KSM =
1

2
U2

SM

where the scalè=k−1
0 may be interpreted as the SM hori-

zontal length scale. As it was shown in detail in CD5,k0 is
obtained from the solution of the eigenvalue problem which
is derived from the eddy dynamical equations (Eq. 2e). In
the limit of a strong non-linearity represented by:

KSM > K̃, K̃ =
1

2
ũ2 (3b)

whereK̃ is the kinetic energy of the baroclinic component
of the mean velocity (defined in Eq. 4b), the solution of the
eigenvalue problem yields the following result:

k−1
0 = ` ≈ rS = π−1(N/|f |)h (3c)

whererS is the Rossby deformation radius of the mixed layer
(ML) of depth h and where N is the buoyancy frequency in
the ML. Relation (Eq. 3c) is in qualitative agreement with
other evaluations of the submesoscale length scale discussed
in the literature (Boccaletti et al., 2007; Thomas et al., 2008;
Fox-Kemper and Ferrari, 2008). In Fig. 9 of Fox-Kemper
et al. (2008), the authors, using simulation data, plot SM
length scales defined using different variables and in unit of
the Stone length scale which is of the order of the deforma-
tion radius.

Equation (2e) together with Eq. (3a), represent a stochastic
Langevin equation which has played a major role in turbu-
lence modeling studies (Kraichnan, 1971; Leith, 1971; Her-
ring and Kraichnan, 1971; Chasnov, 1991). The advantage
of the Langevin equation is that it is linear in the fluctuat-
ing fields and thus allows one to compute second-order mo-
ments while the original Eqs. (2b,c) are non-linear and do
not allow an analytical computation of such correlation func-
tions. The key problem is to find a model for the non-linear
termsQ’s that leads to a Langevin equation whose corre-
lation functions are sufficiently close to those of the orig-
inal Eqs. (2b,c). This is the closure problem for the non-
linear terms. In CD5, we used the closure (Eq. 3a) derived
by Canuto and Dubovikov (1997) and solved the eigenvalue
problem to which the mesoscale dynamic equations were
shown to reduce. Closure (Eq. 3a) has a simple interpreta-
tion within the mixing length approach. In fact, the first two
relations are quite standard withχ−1 being the characteristic
time scale while the third relation containing the character-
istic length scale (Eq. 3c) and velocity, is the only possible
combination that leads to a time scale.

The advantage of the Langevin equation is that it allows
us to express all SM fields in terms of the SM horizontal ve-
locity u′(k,ω) which, in turn, allows us to express the spec-
trum of any second-order moment in terms of the SM energy
spectrum and of the resolved fields. Such a program, which
we discuss in detail in Appendix C, was previously used by
the authors to parameterize mesoscales in the ocean interior
(CD5, 6) and in the mixed layer (Canuto et al., 2010). The
main difference in the case of SM is in the treatment of the
eddy velocity field. In particular, the rotational component
of the SM horizontal velocity calleduR in Eq. (C9), does
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not coincide with the geostrophic velocity. In fact, Eq. (C12)
shows that, using the third of Eq. (C6), in the limit (Eq. 1c),
uR can be represented as follows:

uR = −
ikρ−1p′

1 +
1
2Ro2

, Ro =
USM

|f |`
(3d)

whereRo is the Rossby number andp′ is the SM pressure
field. Thus, when treating mesoscales that are character-
ized by smallRo, the first relation in Eq. (3d) reduces to
the geostrophic relationuR→ug=−ikρ−1p′. On other hand,
since SM are characterized byRo∼1, we must use the com-
plete form of Eq. (C12). This is the reason why we have
not calleduR the geostrophic component and the divergent
componentuD (Eq. C11) the a-geostrophic one.

3 Sub-mesoscale vertical tracer flux

Following the program we have outlined at the end of the
previous section, in Appendix C we show how to express
w′(k, ω) andτ ′(k, ω) in terms of the SM horizontal velocity
u′(k, ω) and of the resolved fields; that, in turn, allows us to
express the spectrum ofFV ≡ w′τ ′ in terms of the SM energy
spectrum. Finally, integrating the spectra over all wavenum-
bers, we obtain the following SM vertical tracer flux

∂zFV=u+

S ·∇H τ , u+

S=−

(
1+γ 2

)−1
[
ũ−γ

f

|f |
ez×ũ

]
(4a)

where:

γ =
rS|f |

USM
=

1

Ro
, ũ = u − h−1

0∫
−h

u(z)dz, (4b)

ez is the unit vertical vector andRo is the Rossby number
defined in Eq. (3d). It is worth stressing that in the second
relation in Eq. (4a), the second term in the square bracket
is a vector: in fact, althoughez×ũ is a pseudo-vector (cross
product of the vectorsez andũ), f is a pseudo-scalar which
is the scalar product of the vectorez and the pseudo-vector
2� and thus the product is a vector. The variableũ may be
interpreted as the ML baroclinic part of the mean velocity.
The parameterization (Eq. 4a,b) is obtained under condition
(Eq. 1c) and can be obtained from Eq. (7a,b) of CD9 in the
limit (Eq. 1c).

In Eq. (4a) the velocityu+

S may be interpreted as thesub-
mesoscale induced velocitywhich is a counterpart of the
mesoscale induced velocity. As noted earlier, to make the
analogy with the mesoscale induced velocity more complete
and since in the mixed layerτ z is small due to the strong
mixing, one may add to Eq. (4a) the termw+

S τ z, wherew+

S
is found from the continuity condition:

∂zw
+

S + ∇H · u+

S = 0 (5)

The only variable in Eq. (4b) that is not yet parameterized
is the SM kinetic energyKSM which we study in the next

section. Before doing so and for future reference, we next
derive the explicit form of the vertical flux itself. Integrating
Eq. (4a) over z with the boundary conditionFV(0)=0, we ac-
count for only the z-dependency ofũ within the mixed layer.
Thus, we obtain:

FV = − κH · ∇H τ (6a)

where the submesoscale diffusivity is given by:

κH = z
(
1 + γ 2

)−1
[
û − γ

f

|f |
ez × û

]
, (6b)

û(z) = z−1

z∫
0

ũdz

From Eq. (6b), one observes that at the bottom of the ML,
z=−h, we have that:

û(−h) = 0, κH (−h) = 0, FV(−h) = 0 (6c)

which is a good approximation since SM eddies hardly pen-
etrate the bottom of the mixed layer (Boccaletti et al., 2007).
We also have the additional relations:

û(0) = 0, κH (0) = 0, FV(0) = 0 (6d)

4 MS kinetic energy in terms of resolved fields

Assuming that the production ofKSM occurs at scales̀∼rs
and since the eddy kinetic energy equation shows that the
vertical buoyancy fluxF b

V acts as the source ofKSM, we em-
ploy the following relations:

KSM = C(rsPK)2/3, PK =<F b
v > ≡ h−1

0∫
−h

dzF b
V(z) (7a)

In the case of 3-D turbulence where kinetic energy cascades
from large to small scales and a Kolmogorov spectrum sets
in, the first relation in Eq. (7a) is simply the statement that
production=dissipation with the former is defined in the sec-
ond of Eq. (7a) while dissipation is represented by a Kol-
mogorov form. In such a case,C=(3/2)Ko(1+A∗) where
A∗>0 accounts for the contribution toKSM of the energy
spectrum atk<k0 andKo is the Kolmogorov constant whose
value ranges between 1.4–2.2. WithA∗=1, Ko=2, we have
C=6. However, in the 2-D case of interest here, cascade of
KSM to smaller scales does not take place. Instead,KSM
transforms into SM potential energy which we denote by
WSM. Then, in the quasi-stationary case, the production of
KSM given in the second of Eq. (7a), approximately equals
the production ofWSM. Since the latter cascades to smaller
scales where is ultimately dissipated, we have:

WSM = C′(rsPK)2/3 (7b)

www.ocean-sci.net/6/679/2010/ Ocean Sci., 6, 679–693, 2010
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whereC′ depends on the spectrum ofWSM. If we further
denote by0SM the ratio of the SM kinetic and potential en-
ergies, from Eq. (7b) we conclude that the first relation of
Eq. (7a) is satisfied with:

C = 0SMC′, 0SM = KSM/WSM (7c)

It is worth noticing that relations analogous to Eq. (7a,b) hold
true for mesoscales as well with the proviso that the con-
stantsC′, 0 and thereforeC, are different for SM and M
due to their different dynamics since, as already mentioned,
SM are trapped in the ML while M form coherent struc-
tures throughout the entire water column and thus entail the
dynamics of the deep ocean. Using a mesoscale resolving
simulation, Eq. (7a) was validated in more than 70 different
mesoscale resolving simulations (Canuto et al., 2010). In the
next sections, on the basis of Capet et al. (2008), we estimate
thatC≈6. Even though at present we have determinedC on
the basis of only one simulation by C8, we shall show be-
low that the variable of interest to OGCMs, the tracer flux,
is only weakly dependent onC. Substituting Eq. (6a,b) and
rS=Nh/π |f | into Eq. (7d), we obtain the following alge-
braic equation forKSM:

K
3/2
SM = C3/2(1 + γ 2)−1hrs(V − γ (f/|f |)ez × V ) (7d)

· ∇H b, V = h−2

0∫
−h

z̃u(z)dz

which is however not convenient for the computation ofKSM
since the latter enters into the right hand side of Eq. (7d)
through the variablesγ , as one observes from Eq. (4b). From
Eqs. (7d) and (4b), one derives the following equation forγ :

A4γ
4

− A3γ
3

− γ 2
− 1 = 0, γ > 0, N2 > 0, (7e)

where:

A4=π2(2C)3/2(f/|f |)(ez×V ∗)·s, (7f)

A3=π2(2C)3/2V ∗·s, V ∗ ≡ V /(h|f |), s=− N−2
∇H b

the vectors being the slope of the isopycnals. Equation (7e)
is valid under the condition

K̃

KSM
=

2 γ 2K̃

r2
Sf 2

< 1, K̃ =
1

2
|̃u|

2 (7g)

which is the same as condition (Eq. 1c) expressed in terms of
the resolved fields. We assess this condition in detail in both
strong and weak wind cases.

In summary, for OGCMs that resolve M but not SM, the
parameterization of the z-derivative of the vertical SM tracer
flux is given by Eqs. (4a, b) and (7e–f).

To illustrate the solutions we have just derived, in the
next sections we consider three important cases: (1) strong
wind driven flows, (2) wind and buoyancy driven flows,
(3) buoyancy-only driven flows.

5 Wind driven flows

In this section we study flows driven by strong winds when
the Ekman velocity exceeds the geostrophic mean velocity
and compare with results obtained in the submesoscale re-
solving simulations of Capet et al. (2008). To obtain results
in an analytical form, we further assume that the ML turbu-
lent viscosityν∼10−2 m2 s−1 is z-independent. Under these
conditions, the mean velocity field can be decomposed into
geostrophicug and EkmanuE components; with the x axis
along the wind direction, we have the relations:

uE = Aeζ α(ζ ), vE = (f/|f |)Aeζ β(ζ ),

A = (νf )−1/2u2
∗, ζ = z/δE, δE = (2ν/f )1/2

α(ζ ) ≡ cosζ + sinζ, β(ζ ) ≡ − ∂α(ζ )/∂ζ (8a)

whereρu2
∗ is the surface stress andδE is the Ekman layer’s

depth. Below we analyze flows driven by winds of different
directions with respect to the geostrophic component of the
mean velocity.

5.1 Down-front winds

Down-front winds (blowing in the direction of the surface
geostrophic velocity) drive dense water over buoyant one and
provide favorable conditions for the generation of subme-
soscales (Thomas, 2005; Thomas and Lee, 2005). We have:

ug = u0 + Sgz, vg = 0, u0, Sg > 0 (8b)

which corresponds to an horizontal buoyancy gradient given
by:

∇H b = − f Sgey (8c)

It is worth noticing thatSg is a scalar sinceey=ez×ex is the
cross product of the two vectorsez (the unit vector along the
Earth radius) andex (the unit vector along the wind direction)
which is a pseudo-vector. To obtain the submesoscale flux
and its z-derivative, we need to computeũ andû defined in
Eqs. (4b), (6b), whereu=uE+ug. Assuming that the mixed
layer thickness h is considerably larger than the depth of the
Ekman layer so that the Ekman numberE=δ2

Eh−2
�1 and

ez0/δE�1, from Eq. (8a,b) we derive that:

<u> ≡ h−1

0∫
−h

u(z)dz, (8d)

<u> = u0 −
1

2
Sgh, <v> = −

f

|f |
AE1/2

ũ=Aeζ α(ζ )+Sg(z+
1

2
h), ṽ=

f

|f |
A
[
eζ β(ζ )+E1/2

]
(8e)

A strong wind (larger than the geostrophic wind) is repre-
sented by the relation:

A/h � Sg (8f)
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Let us now study the z-derivative of the submesoscale
buoyancy flux which we obtain substituting Eq. (8c,e) into
Eq. (4a) withτ=b. The result is:

∂zF
b
V = |f |SgA

(
1 + γ 2

)−1
(9a){[

eζ β(ζ )+E1/2
]
−γ

[
eζ α(ζ )+A−1Sg(z+

1

2
h)

]}
As one can check, the z-derivative of this expression is neg-
ative which implies that the SM vertical buoyancy flux re-
stratifies the ML. Let us compare the latter effect with that
of a down-front mean wind that de-stratifies the ML since
“Ekman flow advects dense water over light” (Thomas et
al., 2008). In the approximation of strong mixing, in the
z-derivative of the mean advection termu·∇H b, the largest
contribution comes from the baroclinic term̃u·∇H b (in fact,
when we differentiateu·∇H b w.r.t. z, the mean velocity
u=<u>+ũ may be substituted by the baroclinic component
ũ since the z-derivative of∇H b may be neglected). From
Eq. (8c,e) we have:

ũ · ∇H b = − |f |SgA
[
eζ β(ζ ) + E1/2

]
(9b)

which we compare with Eq. (9a) in the case of a very strong
wind:

Ro � 1, i.e. γ � 1 (9c)

Under this condition, we may approximate Eq. (9a) as fol-
lows:

∂zF
b
V ≈ |f |SgA

[
eζ β(ζ ) + E1/2

]
= − ũ · ∇H b (9d)

The implication of this relation is thatthe re-stratification
by SM largely compensates the de-stratifying effect of the
mean flow,a conclusion in agreement with Mahadevan et
al. (2010). To express the eddy kinetic energy in terms of
the resolved fields, we first findV from Eq. (7d):

V = Vxex + Vyey, Vx =
1

2

(
AE +

h

6
Sg

)
, (10a)

Vy = −
1

2
A

f

|f |
E1/2

(
1 − E1/2

)
Substituting Eq. (10a), together with Eq. (8c), into Eq. (7d),
we obtain:

K
3/2
SM =−(2C)3/2

(
1+γ 2

)−1
rSh|f |Sg (10b)[

(f/|f |)Vy−γVx
]

We recall that in real flows the mixed layer depth exceeds the
Ekman one and thus in Eqs. (10a) we haveE<1. Inspec-
tion of relations Eqs. (10a,b) shows that bothVx,y contribute
with the same sign to the SM kinetic energy. In addition,
under condition (Eq. 8b) thatSg>0, these contributions are

positive. Thus, we conclude that the down-front wind gen-
erates the most vigorous SM eddies, in agreement with the
results of Thomas (2005), Thomas and Lee (2005), Thomas
et al. (2008) and Mahadevan et al. (2010) thatdown-fronts
winds provide the most favorable condition for SM genera-
tion.

As discussed in the previous section, the variableγ is so-
lution of Eq. (7e) in whichA3,4 are given by (making use of
Eqs. 7f and 10a):

2A4 = π(2C)3/2 Sg

N2h

(
AE +

1

6
hSg

)
, 2A3 (10c)

=− π(2C)3/2 Sg

N2h
AE1/2

(
1 − E1/2

)
In the case of a strong down-front wind satisfying condition
(Eq. 9c) and withE�1, we have|A3|>|A4| and the first
term in Eq. (7c) may be neglected. Then, we obtain:

γ ≈ (−A3)
−1/3

= (2C)−1/2

(
2hN2

π2SgA

)1/3

E−1/6 (10d)

Next, we discuss condition (Eq. 7g). Using Eq. (8e) for the
case of a strong down-front wind, we obtain:

K̃ =
1

4
A2
(
E1/2

− 2E
)

(10e)

Substituting this result into Eq. (7g) together with Eq. (10d),
we obtain:(

1 − 2E1/2
)(πA2E1/2

4h2NSg

)1/3

< C (10f)

which is amply satisfied in the simulations of Capet et
al. (2008).

5.2 Up-front wind

Up-front wind (blowing in the direction opposite to that of
the surface geostrophic velocity). In this case, the contribu-
tion of the baroclinic component of the mean flow to Eq. (1a)
is given by Eq. (9b) and has the sign opposite to that in the
previous case since nowSg<0, i.e., in this casẽu leads to a
re-stratification of the ML.

It is worth treating strong winds first. In this case, the first
term ofVx in Eq. (10a) dominates, we haveVx>0,Vy<0 and
thus the expression in the square bracket of Eq. (10b) is neg-
ative. Using the relation(1+γ 2)−1

= KSM/(KSM + r2
Sf 2),

we conclude that the only solution of Eq. (10b) isKSM=0
which implies thatsubmesoscales are not generated.

On the other hand, in the case of weak winds when sub-
mesoscales are generated, they re-stratify the ML. Thus, the
re-stratification effect of the mean flow is strengthened by
that due to SM, a conclusion in agreement with the results of
Mahadvan et al. (2010).
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5.3 Wind perpendicular to the geostrophic velocity

In such flows we have:

vg = v0 + Sgz, ug = 0 (11a)

and thus:

∇H b = |f |Sgex (11b)

In contrast with Eqs. (8d–e) and (10a), in this case, the
geostrophic component contributes to the y-projections of
<u>, ũ, andV. In particular, we have

2Vx=AE, 2Vy=−
f

|f |

[
AE1/2

(
1−E1/2

)
+

1

6
hSg

]
(11c)

Substituting this relation into Eq. (7d), we obtain:

K
3/2
SM=C3/2

(
1+γ 2

)−1
rSh|f |Sg

[
Vx+γ (f/|f |)Vy

]
(11d)

Inspection of relations Eq. (11c,d) shows that the compo-
nentsVx,y contribute toKSM with the opposite sign. Still,
in the case of a strong wind corresponding to a smallγ , the
first term in Eq. (11d) dominates which yields a positiveKSM
if Sg>0. In this case, the direction of the wind coincides with
that of the horizontal buoyancy gradient (up-gradient wind).
Under the same conditionSg>0, the baroclinic component of
ũ de-stratifies the ML since in this case instead of Eq. (9b),
we have:

ũ · ∇H b = |f |SgAeζ α(ζ ) (11e)

which has a positive z-derivative and thus de-stratifies the
mixed layer, while SM tend to re-stratify the mixed layer. As
one can see from Eqs. (9b) and (11e), in both cases (Sect. 5.1)
and (Sect. 5.3) “Ekman flow advects dense water over light”
(Thomas et al., 2008). On the contrary, if∇H b has a direction
opposite to that of the wind (down-gradient wind), so that
Sg<0, strong winds tend to re-stratify the mixed layer and do
not generate submesoscale eddies.

In conclusion, our analytical results for flows driven by
wind and baroclinic instability with different directions of
the wind and the buoyancy gradient, are in agreement with
the results of eddy resolving simulations by Mahadevan et
al. (2010).

6 Testing the SM parameterization against simulations
with wind and buoyancy

In this section, we compare our model results with Capet et
al. (2008, C8). We begin with Fig. 12 of C8 which gives
∂zF

T
V (z) which we compare with our model (Eq. 4a). To do

so, we assume that the direction of∇H T coincides with that
of ∇H b and that the wind blows in the down-front direction.
Then, in analogy with Eq. (9a), from Eqs. (4a) and (8a) we
obtain:

∂zF
T
V =A(1+γ 2)−1 (12a)

{[
eζ β(ζ )+E1/2

]
−γ

[
eζ α(ζ )+A−1Sg(z+

1

2
h

]}
∇H

∣∣T ∣∣
Since from Fig. 11 of C8 we have
0.8·10−5 0Cm−1<|∇H T |<2.7·10−5 0Cm−1, we use
|∇H T |=1.5·10−5 0Cm−1. As for the buoyancy frequency
N , we use the characteristic valueN=10−3 s−1. Next, we
need the values ofA, Sg, h, δE and KSM defined in the
previous section. From the C8 data presented in Fig. 10, we
derive the following results:

Sg ≈ 6 × 10−4 s−1, A ≈ 6 × 10−2 ms−1, (12b)

δE ≈ 10 m, h∼40 m, KSM ≈ 1.8 × 10−3 m2 s−2

While for the determination ofA andSg we need the profiles
of the projections of the mean velocityu(z), in their Fig. 10,
C8 present only the absolute value|u(z)|. However, assum-
ing that the wind blows in the down-front direction, one can
extractA andSg from their Fig. 10. Finally, from Eqs. (12b),
(4b) with rS=(N/π |f |)h and Eq. (10e), we derive that:

γ = 0.3, K̃ = 1.1 × 10−4 m2 s−2, (12c)

E = (δE/h)2
= 1/16

Using this value ofγ in Eq. (7e) together with Eq. (10c), we
derive that:

C = 6 (12d)

Regrettably, the C8 data are the only ones available that al-
lowed us to estimate the parameter C and other data would
be welcome to confirm Eq. (12d). Fortunately, as relation
Eq. (10d) shows, the dependence ofγ on C is rather weak.
In addition, under condition (Eq. 9c), which is satisfied by
the first result (Eq. 12c), in Eq. (12a,e) the terms linear inγ

are small compared to the main terms which do not contain
γ . Thus, we conclude that in the case of a strong down-front
wind, the effect ofC on the SM tracer flux is relatively weak.
Next, substituting Eq. (12b,c) into Eq. (1c), one can see that
the condition is amply satisfied. Finally, in Fig. 1 we com-
pare the z-profile of−∂zF

T
V (z) from Eq. (12a) with that of

Fig. 12 of C8 (dashed line). In Fig. 2, we compare the pro-
files of the fluxesF T

V (z) from the present model:

F T
V =

(
1+γ 2

)−1
A (12e){(

1−eζ cosζ+2z/h
)
δE−γ

[
δEeζ sinζ+

1

2
A−1Sgz(z−z0)

]}
∣∣∇H T

∣∣
with that of C8 which we compute using C8 data for the z-
derivative of the flux shown in Fig. 12. As one can observe,
the profiles of the fluxes are quite close throughout the mixed
layer depth. As for the profile of−∂zF

T
V (z), they are quite
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Fig. 1. −∂zF
T
V (z) for ICC0 simulation data by Capet et al. (2008)

(dashed curve taken from their Fig. 12) and for the present model
(Eq. 12a) (solid curve).

Fig. 2. Profile of the vertical heat fluxFT
V (z) for the ICC0 simu-

lation data by Capet et al. (2008) (dots) obtained by integrating the
dashed curve in Fig. 1, and for the present model (Eq. 12c) (solid
curve).

close in the upper half of the mixed layer but differ some-
what in the lower half. We think this is due to the similarity
of the mean velocity profile (Eq. 8a) with that in the C8 at
small depths and by an unavoidable difference in the lower
part of the mixed layer due to the different profiles of the ver-
tical viscosity used here and in the C8 simulations. While in
our analysis we adopted an Ekman profile corresponding to
a ν(z) = const., C8 adopted a more realistic model forν(z).
In spite of that difference, the profiles|u(z)| compare well,
as seen in Fig. 3.

7 No-wind case – Buoyancy only

In addition to the realistic case studied by C8, there are data
from simulations corresponding to the less realistic case of

u(m s )-1

present model

Capet et al.

z(
m

)

Fig. 3

Fig. 3. Absolute value of the mean velocity considered in the
present analysis which corresponds to the case of a down-front wind
and which is given by Eqs. (8a,b), (12b) (solid curve) and the one
computed in ICC0 simulation of Capet et al. (2008) (dashed line
which is taken from their Fig. 10).

no wind (Fox-Kemper et al., 2008, FFH) which can also be
used to test of our model predictions. Following FFH, we as-
sume that the mean velocity is in thermal wind balance with
the mean buoyancy field and that the mean buoyancy gradient
does not vary inside the mixed layer, i.e.,uz=f −1ez×∇H b

is z independent. Irrespectively of the surface value ofu,
from Eq. (4b) and the second of Eq. (6b), we derive that:

ũ=
1

2f
(2z+h)ez×∇H b, û=

1

2f
(z+h)ez×∇H b (13a)

Takingτ=b in Eq. (6a,b), and using Eq. (13a), the buoyancy
flux is given by:

FV(z) = 8(γ )
h2

16|f |

(
1 − ξ2

)
|∇H b|

2, (13b)

ξ = 1 + 2zh−1, 8(γ ) =
2γ

1 + γ 2

with:

FV(0)=0, FV(−h)=0, FV(−h/2)=8
∣∣∇H b

∣∣2>0 (13c)

To complete this parameterization ofFV , γ must be obtained
from solving Eq. (7e). Substituting Eq. (13a) into the second
of Eq. (7d), we obtain:

V =
h

12f
ez × ∇H b (14a)

Substituting this result into Eq. (7f), we obtain:

A4 =
π2

12
(2C)3/2Ri−1, A3 = 0, Ri =

|f |
2N2∣∣∇H b
∣∣2 (14b)
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Fig. 4. Richardson number dependence of the two ratios in
Eq. (15a, d). The first ratio, represented by full circles with error
bars, correspond to updated results from Fox-Kemper’ Comments
to our manuscript during the Discussion phase: Ocean. Sci. Dis-
cuss. 6, C916–C926, 2009,http://www.ocean-sci-discuss.net/6/.
The results of the present model given by Eq.(15e) withC=6 are
shown by the full line. The blue line corresponds to the FFH pa-
rameterization,8=1.

The solution of Eq. (7f) is then as follows:

γ 2
= C∗

(
Ri +

√
Ri2

+ 2Ri/C∗

)
, C∗ =

6

π

2

(2C)3/2 (14c)

If we employ the valueC=12 that we have determined from
the data of Capet et al. (2008), we can compute the function
(Eq. 13b):

8(γ ) =8(Ri) (14d)

which we exhibit in Fig. 4. We further notice that in spite
of the fact noted before that we have only one set of data to
determineC, Fig. 5 shows that differentC’s have only an
overall marginal effect on the buoyancy flux in the interval
1<Ri<100.

Next, we find the limits of applicability of the parameter-
izations (Eqs. 13b and 14c,d). To this end, we find the baro-
clinic mean kinetic energy averaged over the ML depthK̃

using the definition (Eqs. 7g, 4b and 13a):

K̃ =
1

24
h2f −2

|∇H b|
2

=
1

12
KM (14e)

This result shows that at the surface the mean baroclinic ki-
netic energỹK is twelve times smaller than the mean kinetic
energyKM=

1
2u2. To compute the SM kinetic energy, we use

the first definition (Eqs. 4b and14c) and derive that:

2KSM =

(
hN

πγ

)2

, γ = γ (Ri) (14f)

Fig. 5. Same as Fig. 4 but with two different values of the parameter
C=3 (dashed), 6 (solid) to show the weak dependence on such a
parameter.

Thus, condition (Eq. 1c) becomes:

Ri >
π2

36
(
3C3/2−1

) ∼ 2 × 10−3 (14g)

Next, we compare Eq. (13b) with the FFH data and recall
that in their Fig. 14e the authors plot the ratio:

3(data) =
FV(data)

FV(FFH)
(15a)

where:

FV(FFH) = 0.06|f |
−1h2µ(z)|∇H b|

2, (15b)

µ(z) = (1 − ξ2)(1 + 5ξ2/21) (15c)

is the parameterization suggested by FFH by fitting their sim-
ulation data. To compare the model results with the simula-
tion data, we construct the ratio:

3(model) =
FV(model)

FV(FFH)
(15d)

Thus,3(FFH)=1, by definition (blue line in Fig. 4). To com-
pute Eq. (15d) in our model, we notice that the profile µ(z)

in Eq. (15c) has the additional factor(1+5ξ2/21) in com-
parison with the profile (Eq. 13b). The difference does not
exceed 25% and we neglect it when substituting Eqs. (13b)
and (15b,c) into Eq. (15d). As a result, we obtain:

3(present model) = 8(Ri) (15e)

which we show in Fig. 4 (red line). The present parame-
terization yields a good representation of the FFH simula-
tion data especially the curvature exhibited by the data. The
agreement is somewhat worse atRi&103 which is due to the
use of Killworth’s (2005) approximation to neglectτ z; in
fact, such an approximation becomes questionable whenRi
is large, that is, whenbz=N2 is large. Finally, we discuss
whether the FFH flux (Eq. 15b,c) without wind can represent
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the case with wind. To that end, we take the value ofSg in
the first of Eq. (12b) as determined from C8 simulations and
substitute it in Eq. (11b) with the result:

∇H b ≈ 0.5 · 10−7 s−2 (15f)

Substituting this result in Eq. (15b,c), and using the same
mixed layer depthh=40 m as in C8, we obtain:

maxFV(FFH) = 2.4 · 10−9 m2 s−3 (15g)

If one compares this value with the value from C8 (Fig. 2):

maxFV = gαT maxF T
V = 2 · 10−8 m2 s−3 (15h)

one concludes that the FFH flux formula with no wind under-
estimates the flux by about an order of magnitude, a conclu-
sion in agreement with Mahadevan and Tandon (2006) who
stressed that “winds play a crucial role in inducing subme-
soscale structure” not to mention the multifaceted and im-
portant implications on the mixed layer stratification caused
by the down-wind, up-wind vs. buoyancy topology described
in Sect. 6.

8 Conclusions

Recently, there has been a considerable interest in sub-
mesoscales which are oceanic structures of O (1 km) size
and life times of the order of days. High resolution numer-
ical simulations have been the best source of information
to assess the parameterizations of SM fluxes to be used in
OGCMs that do not resolve such features. If one consid-
ers that the highest resolution of about 1/100 in stand-alone
OGCMs can represent structures of about 10km size which is
10 times larger than the SM sizes and that OGCMs employed
in thousand years runs for climate studies have resolution of
about 10 (corresponding to structures 100 times larger than
SM), it seems clear that a good deal of important physical
processes have thus far gone unrepresented in those OGCMs.

The present work presents an analytical parameterization
of the SM vertical flux of an arbitrary tracer. The main fea-
tures can be described as follows:

(a) no other SM parameterization exists (to the best of our
knowledge) that provides an analytical expression for
the vertical flux of an arbitrary tracer under arbitrary
buoyancy and wind (strength and direction),

(b) the SM parameterization by FFH does not include winds
and it is limited to the buoyancy field which cannot be
used to describe tracers such as the ones needed in the
C-cycle models in OGCMs for climate studies,

(c) the results of the realistic simulations by C8 and MTF
with baroclinic instabilities and winds, are well repro-
duced by our model,

(d) our parameterization given by Eqs. (4a–c), (7e–f),
(12d), is to be used in OGCMs that resolve mesoscales
but not sub-mesoscales,

(e) in a different study (Canuto and Dubovikov, 2010), we
have derived the parameterization for the tracer verti-
cal flux for OGCMs that do not resolve either subme-
soscales or mesoscales.

Appendix A

The non-linear termsQH

As discussed in textbooks on Turbulence theories (e.g.,
Batchelor, 1970; Lesieur, 1990; McComb, 1992), the
stochastic Langevin equation has played a major role in tur-
bulence modeling studies (Kraichnan, 1971; Leith, 1971;
Herring and Kraichnan, 1971; Chasnov, 1991). Though most
turbulence models are presented in terms of the energy spec-
trum, which is a second-order moment, the starting point is
always the Navier-Stokes equations (NSE) presented in the
form of a stochastic Langevin equation ink-space:

∂tui(k,t) = f t
i (k,t) − νd(k)k2ui(k,t) + f ext

i (k,t) (A1)

in which the non-linear (NL) term of NSE is represented by
the two terms: the turbulent forcingf t

i (k,t) which is due to
the infrared (smallk) part of the NL interactions and ultravi-
olet part which is represented by the enhancedk-dependent
dynamical viscosityνd(k)=ν+νt (k), whereν is the kine-
matic viscosity whileνt (k)is a turbulent viscosity discussed
in Appendix B. As discussed in the references cited above,
the dynamic equation for the energy spectrumE(k) is ob-
tained by multiplying Eq. (A1) byu∗

i (k
′) and integrating over

n=k/|k|, the result being:

∂tE(k) = At(k) − 2k2νd(k)E(k) + Aext (A2)

where the workAt is given by:

At(k) = k2
∫

dndk′<ui(k
′,t)f t

i (k,t)> (A3)

On the other hand, the general equation forE(k) is given by
(Batchelor, 1970, Eq. 6.6.1)

∂tE(k) = T (k) − 2νk2E(k) + Aext (A4)

whereT (k) is the non-linear transfer. From Eqs. (A3,A4) it
follows that:

T (k) = At(k) − 2νt (k)k2E(k) (A5)

Within the closure model developed by Canuto and
Dubovikov (1997), the form ofAt(k) is given by:

At(k) = −r(k)
∂E(k)

∂k
,

1

2
r(k) =

k∫
0

p2νt (p)dp (A6)
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The key feature of this closure is thatAt(k) is proportional
to the derivative∂kE which vanishes in the vicinity of the
wavenumberk=k0 whereE(k) has its maximum. This re-
duces the two NL terms in Eq. (A1) to the second one only
which, in the notation of Eq. (2d,e), implies that:

Qu
H = k2

0νd(k0)u
′, νd = χd (A7)

Appendix B

Turbulent viscosity νt(k)

Contrary to the kinematic viscosityν which does not depend
on the size of the eddies, the turbulent viscosityνt (k) which
is due to the NL interactions, depends on the eddy size and its
sum toν is called the dynamical viscosity,νd(k)=ν+νt (k).
The search for a suitable expression forνt (k) dates back
many decades and the first explicit expression is the heuris-
tic one proposed by Heisenberg as discussed in Batchelor’s
book (1970, Sect. 6.6, Eq. 6.6.13),

νt (k) = γ

∞∫
k

p−3/2E(p)1/2dp γ=O(1) (B1)

whereE(k) is given by Eq. (A2) is the kinetic energy spec-
trum whose integral over all wavenumbers yields the eddy
kinetic energyKE. As discussed by Batchelor, Eq. (B1) was
successfully used to derive the Kolmogorov spectrum. A non
heuristic derivation ofνt (k) has however been lacking un-
til recently with the advent of methods to treat the Navier-
Stokes equation borrowed to a large extent from quantum
field theory. A full presentation was made by the present
authors in 1997 with the final result:

νt (k) =

ν2
+

1

2

∞∫
k

p−2E(p)dp

1/2

(B2)

Equation (B2) has several interesting features worth dis-
cussing. First, it says that an eddy of arbitrary size (∼k−1)
feels the effects of all the eddies smaller than itself, as the in-
tegral begins at k and accounts for all the wavenumbers from
k to infinity. Equation (B2) naturally reduces to the kine-
matic viscosityν when the size of the eddy is very small and
k tends to infinity. Due to the presence of the kinematic vis-
cosity, Eq. (B2) is valid for arbitrary Reynolds number since
it can be rewritten as:

νt (k) = ν
[
1 + Re(k)2

]1/2
, Re(`) ∼

`K1/2

ν
(B3)

If one employs the Kolmogorov spectrum
E(p)=Koε2/3k−5/3, one obtains in the largeReregime:

Re � 1 : νt (k) =

(
ν2

+
3Ko

16

ε2/3

k8/3

)1/2

≈ ε1/3`4/3 (B4)

which is the well-known Richardson 4/3 law diffusivity
∼`4/3. Finally, relation (Eq. B2) shows that there is no such
a thing as a unique turbulent viscosity since each eddy feels
its own turbulent viscosity. In Eqs. (2e) and (3a) we are inter-
ested in the functionνt (k)≈νd(k) in the vicinity of the max-
imum of the energy spectrumk=k0. Assuming that most of
the energy is contained in that region, from Eq. (B2) we de-
rive thatνd∼k−1

0 K
1/2
E . Thus, from Eq.!(A7) it follows that:

Qu
H = k

1/2
0K

E
u′ (B5)

which is the closure form in Eq. (3a). The closure for the
tracer field is analogous.

Appendix C

Derivation of Eq. (4)

C1 Sub-mesoscale tracer fieldτ ′

Substituting Eq. (3a) into the tracer Eq. (2e), we obtain the
following expression for the submesoscale tracer field:

τ ′
=

u′
· ∇H τ

χ +i(k · u − ω)
(C1)

where|k|=k0=r−1
S . As in the case of mesoscales discussed

in CD5, the frequencyω is obtained by solving the eigen-
value problem mentioned below Eq. (3a) with the following
result (dispersion relation):

ω(k) = k · ud (C2)

This relation can be interpreted as the Doppler transforma-
tion for the frequency provided that in the system of coor-
dinates moving with velocityud , the submesoscale flow is
stationary, in which caseω=0. Stated differently, relation
(Eq. C2) implies thatud is theeddy drift velocitywhose ex-
pression in terms of mean fields is analogous to that for the
case of mesoscales given in Eq. (4f) of CD6:

ud = <u> +
1

2
`2ez × (β − f <∂zs>) (C3)

wheres=−∇H b/N2 is the slope of isopycnal surfaces and
β=∇f . The bracket averaging is defined as follows:

<•> ≡

0∫
−h

(•)K
1/2
SM(z)dz/

0∫
−h

K
1/2
SM(z)dz (C4)

Due to the smallness of the scale` characterizing subme-
soscales, the second term in Eq. (C3) is negligible and thus
in good approximation we have that:

ud = <u> (C5)
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which changes Eq. (C1) to the form:

τ ′
= −

u′
· ∇H τ

χ +ik · ũ
, ũ = u − <u>, χ = `−1K

1/2
S (C6)

Relation (Eq. C2) implies that the dependence of the subme-
soscale fields onω is of the form:

A′(ω,k) = A′(k)δ(ω − k · ud) (C7)

and therefore in the(t,k)-space the fieldsA′ depend on time
as follows:

A′(t,k) = A′(k)exp(− ik · ud t) (C8)

Due to relations (Eqs. C7,C8), after substituting Eq. (3a) in
Eq. (2e), the latter may be solved in both (ω, k) and (t,k)
representations.

C2 Sub-mesoscale velocity fieldw′

It is convenient to begin by splitting the mesoscale velocity
field u′ into a rotational (divergence free, solenoidal) and a
divergent (curl free, potential) components:

u′(k) = uR(k) + uD(k); uR(k) = n × ezuR(k), (C9)

uD(k) = nuD, n = k/k

and thus the third equation in Eq. (2e) becomes:

∂zw
′
= − ik · u′

= −ikuD (C10)

To determineuR,D, we substitute the second relation (Eq. 3a)
in the second equation in Eq. (2e) and derive the following
expressions:

uD = f −1(χ + ik · ũ)uR (C11)

uR = −
ikρ−1p′

1 + f −2(χ + ik · ũ)2
, ũ = u − <u> (C12)

These relations, as well as Eq. (C6), are valid in both (ω, k)
and (t,k) representations. Below, we will use them in the
(t,k) representation together with Eq. (C8). Due to the third
relation of Eq. (3a), the further use of Eqs. (C11) and (C12)
is considerably simplified under the condition

KSM/K̃ � 1 (C13)

which allows us to neglect the second terms in the brackets
in Eqs. (C11) and (C12). Condition (Eq. C13) coincides with
Eq. (1c).

C3 Spectrum of the vertical SM flux

In the dynamical Eq. (1a) one needs∂zFV which we shall
write as follows:

∂zFV = w′
zτ ′ + w′

τ ′
z
≈ w′

zτ ′ (C14)

where in the last expression we have neglected the termw′τ ′
z

in accordance with the adopted approximationτ ′ and be-
cause it is of a higher order in z. Substituting Eq. (C11) into
Eq. (C10), we obtain the expression for∂zw

′ which allows
us to compute∂zFV using Eq. (C14).

The strategy of computing submesoscale fluxes, which are
bilinear correlation functions, consists in computing these
functions in(t,k)-space which, in the approximation of ho-
mogeneous and stationary mean flow, have the form:

A′(t,k′)B ′∗(t,k) = A′B ′∗(k)δ(k − k′) (C15)

which, because of relation (Eq. C8), does not depend ont .
The functionReA′B ′∗(k) is usually referred to as the density
of A′B ′ in k-space. The spectrum of the correlation function
A′B ′ is:

A′B ′(k) =

∫
ReA′B ′∗(k)δ(k − |k|)d2k (C16)

i.e., the spectrum ofA′B ′ is obtained by averaging
ReA′B ′∗(k) over the directions ofk and multiplying the re-
sult by πk. Finally, the correlation functionA′B ′ in physi-
cal space is obtained by integrating over the spectrum. Fol-
lowing this procedure, from the first of Eq. (C6) and using
Eqs. (C9,C10), we derive the relation:

Re w′
zτ ′∗(k) = (C17)

− Im
{
kχ2(χ + ik·̃u)

[
uDu∗

R(k)n×ez+|uD|2(k)n
]}

· ∇H τ

Next, from Eqs. (C11,C12) we derive the following relations:

Re uDu∗

R(k) = χf −1
|uR|2(k), (C18)

Im uDu∗

R(k) = f −1k · ũ|uR|2(k)

|uD|2(k) = χ2f −2
|uR|2(k), |u′|2(k) (C19)

= |uD|2(k) + |uR|2(k) = (1 + χ2f −2)|uR|2(k)

Substituting Eq. (C18) into Eq. (C17) and averaging over the
directions ofk, we obtain the spectrum ofw′

zτ ′(k). Under
conditions (Eq. C13), we get:

w′
zτ ′(k) (C20)

= − k2
0χ̂−2

[
χf −1

|uR|2(k)̃u ×e + |uD|
2
(k)̃u

]
· ∇H τ
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where:

πk|uR|
2(k) = 2

(
1 + χ2f −2

)−1
E(k), πk|uD|

2(k) (C21)

= 2
(
1 + χ−2f 2

)−1
E(k), E(k) =

1

2
πk|u′|

2(k)

whereE(k) is the spectrum of the total (rotational + diver-
gent) eddy kinetic energy. Due to relation (Eq. C14), the
left hand side of Eq. (C20) multiplied byπk is the spectrum
of the z-derivative of the vertical flux∂zFV(k). Thus, mul-
tiplying Eq. (C20) byπk, using Eq. (C21), we obtain the
following expression for the spectrum of∂zFV(k) near the
maximum of the energy spectrum:

∂zF
τ
V(k) = 8(k) · ∇H τ (C22)

where:

8(k) = − 2E(k)k2
0χ−2 (C23)[

χf −1(1 + χ2f −2)−1̃u × ez + (1 + χ−2f 2)−1̃u
]

Assuming that the spectraFV(k) and E(k) have similar
shapes, integration of Eqs. (C22,C23) overk reduces to the
substitution ofE(k) andFV(k) with the eddy kinetic energy
KSM andFV in physical space. Thus, we get Eq. (4a,b).
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